滑动窗口算法
说起滑动窗口算法,很多读者都会头疼。这个算法技巧的思路非常简单,就是维护一个窗口,不断滑动,然后更新答案么。LeetCode 上有起码 10 道运用滑动窗口算法的题目,难度都是中等和困难。该算法的大致逻辑如下:
int left = 0, right = 0;
while (left < right && right < s.size()) {
// 增大窗口
window.add(s[right]);
right++;
while (window needs shrink) {
// 缩小窗口
window.remove(s[left]);
left++;
}
}
这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。
另外,虽然滑动窗口代码框架中有一个嵌套的 while 循环,但算法的时间复杂度依然是 O(N)
,其中 N
是输入字符串/数组的长度。
为什么呢?简单说,指针 left, right
不会回退(它们的值只增不减),所以字符串/数组中的每个元素都只会进入窗口一次,然后被移出窗口一次,不会说有某些元素多次进入和离开窗口,所以算法的时间复杂度就和字符串/数组的长度成正比。
解析
3. Longest Substring Without Repeating Characters
- 用一个 window (map) 来记录已经遇到的字符,并扫描每一个字符
- 如果遇到了没碰到过的字符(不在 window)中,把该字符加到 window中(expand the window, i.e., increment r)
- 如果遇到了已经碰到过的字符(在 window)中,比如abcc,shrink the window (increase l) 直到 s[l] == s[r],此后再次移动 l
# sliding window - 写法1 (myself)
# - time: O(n) # the length of the string
# - space: O(m) # the total number of unique characters in the string
def lengthOfLongestSubstring(self, s):
res = 0
window = set()
l = 0
for r in range(len(s)):
if s[r] not in window: # 如果遇到一个新字符,expand the window
window.add(s[r])
res = max(res, len(window))
else:
while s[l] != s[r]: # 如果遇到一个已经遇到过的字符,shrink the window
window.remove(s[l])
l += 1
l += 1
return res
# sliding window - 写法1 (myself)
# - time: O(n) # the length of the string
# - space: O(m) # the total number of unique characters in the string
def lengthOfLongestSubstring(self, s: str) -> int:
charSet = set()
l = 0
res = 0
for r in range(len(s)):
while s[r] in charSet: # shrink the window first
charSet.remove(s[l])
l += 1
# after make sure the window is valid, expand the window
charSet.add(s[r])
res = max(res, r - l + 1)
return res
# sliding window - 写法1 (neetcode optimal)
# - time: O(n) # the length of the string
# - space: O(m) # the total number of unique characters in the string
def lengthOfLongestSubstring(self, s):
"""
:type s: str
:rtype: int
"""
mp = {} # 用一个map来记住之前遇到过的元素对应坐标,因而 shrink 的时候,只需要 O(1),而不需要 O(n)
l = 0
res = 0
for r in range(len(s)):
if s[r] in mp: # shrink the window
# 需要用 max 而不能 mp[s[r]] + 1,因为存在 mp[s[r]] + 1 比 l 小的情况,
# 比如 "abba", 在 r = 3时,mp[s[r]] + 1 为 1,而 l 为 2,此时 l 应该取 2
l = max(mp[s[r]] + 1, l)
mp[s[r]] = r
res = max(res, r - l + 1)
print(r, res)
return res
ref
- https://www.youtube.com/watch?v=wiGpQwVHdE0
- https://neetcode.io/problems/longest-substring-without-duplicates
76. Minimum Window Substring
# solution 1 - sliding window
# - time: O(s), since one element in s will be push/pop to the window once respectively
# - space: O(1)
def minWindow(self, s: str, t: str) -> str:
tCount = {}
for char in t: # time: O(t)
tCount[char] = tCount.get(char, 0) + 1
tKeyCount = len(tCount) # the number of char to be satisfied
curMinLen = 0
res = ""
curWindow = {} # the window
curSatisfiedKeyCount = 0
l = 0
for r in range(len(s)): # time: O(s)
char = s[r]
curWindow[char] = curWindow.get(char, 0) + 1
if char in tCount and curWindow[char] == tCount[char]: # the number of char has satisfied
curSatisfiedKeyCount += 1
while curSatisfiedKeyCount == tKeyCount: # means that t is the substring of the current window
# update the result
if curMinLen == 0 or (curMinLen != 0 and (r - l + 1) < curMinLen): # found an eligible substring
res = s[l:r + 1]
curMinLen = r - l + 1
# shrink the window
curWindow[s[l]] -= 1
if s[l] in tCount and curWindow[s[l]] < tCount[s[l]]:
curSatisfiedKeyCount -= 1
l += 1
return res
ref
- https://www.youtube.com/watch?v=jSto0O4AJbM
- https://neetcode.io/problems/minimum-window-with-characters
121. Best Time to Buy and Sell Stock
# brute force
# - time: O(n^2)
# - space: O(1)
def maxProfit(self, prices: List[int]) -> int:
res = 0
for i in range(len(prices)):
buy = prices[i]
for j in range(i + 1, len(prices)):
sell = prices[j]
res = max(res, sell - buy)
return res
# two point - 写法1
# - time: O(n)
# - space: O(1)
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
lowest_price = prices[0] # lowest price seen so far
max_profit = 0
for r in range(len(prices)):
if prices[r] < lowest_price: # shrink the window if needed
lowest_price = prices[r]
curr_profit = prices[r] - lowest_price
max_profit = max(max_profit, curr_profit)
return max_profit
# sliding window - 写法2
# - time: O(n)
# - space: O(1)
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
max_profit = 0
l = 0
for r in range(1, len(prices)):
if prices[r] > prices[l]: # profitable?
cur_profit = prices[r] - prices[l]
max_profit = max(max_profit, cur_profit)
else:
l = r
return max_profit
ref
219. Contains Duplicate II
abs(i - j) <= k
means size of the window is <= k
# brute force
# - time: o(nk)
# - space: O(n)
# sliding window
# - time: o(n)
# - space: O(k)
def containsNearbyDuplicate(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: bool
"""
window = set()
l = 0
for r in range(len(nums)):
if r - l > k: # shrink the window first if need
window.remove(nums[l])
l += 1
if nums[r] in window:
return True
window.add(nums[r])
return False
- k 就是滑动窗口的最大大小
- 如果当前滑动窗口,大于可以考虑的窗口范围,shrink the window first
- 用一个set来存储当前滑动窗口中已经存在的元素,在插入前先判断该元素是否已经存在于set中,如果存在,那么就返回true,否则插入该元素到set中
- 如果滑动窗口的大小大于k,那么就从set中删除滑动窗口最左边的元素
- ref
122. Best Time to Buy and Sell Stock II
# two points
# - time: o(n)
# - space: O(1)
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
lowest_price = prices[0]
total_profit = 0
for r in range(len(prices)):
if prices[r] > lowest_price: # if profitable, sell. Then update the can-buy price
total_profit += prices[r] - lowest_price
lowest_price = prices[r]
return total_profit
ref
239. Sliding Window Maximum
TODO
* 309. Best Time to Buy and Sell Stock with Cooldown
decision tree + cache:
- without caching: O(2^n)
- With caching: O(n)
# recursion
# time: O(2^n)
# space: O(1)
def maxProfit(self, prices: List[int]) -> int:
def dfs(i, buying):
if i >= len(prices):
return 0
cooldown = dfs(i + 1, buying)
if buying:
buy = dfs(i + 1, not buying) - prices[i]
return max(buy, cooldown)
else:
sell = dfs(i + 2, not buying) + prices[i]
return max(sell, cooldown)
return dfs(0, True)
# DP (top-down)
# time: O(n)
# space: O(n)
class Solution:
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
# State: buy or sell
# If buy -> i + 1
# if Sell -> i + 2 (because of cooldown day)
dp = {} # key=(i, buying) val=max_profit
def dfs(i, buying):
if i >= len(prices):
return 0
if (i, buying) in dp:
return dp[(i, buying)]
if buying:
buy = dfs(i + 1, not buying) - prices[i]
cooldown = dfs(i + 1, True)
dp[(i, buying)] = max(buy, cooldown)
else:
sell = dfs(i + 2, not buying) + prices[i]
cooldown = dfs(i + 1, False)
dp[(i, buying)] = max(sell, cooldown)
return dp[(i, buying)]
return dfs(0, True)
ref
- https://neetcode.io/problems/buy-and-sell-crypto-with-cooldown
- https://www.youtube.com/watch?v=I7j0F7AHpb8&ab_channel=NeetCode
424. Longest Repeating Character Replacement
- 替换策略:把用出现次数最多的字符替换其他字符
- 用 count map (window)把每个字符出现的次数记录下来,每次 for loop 这个 count map 来找到出现次数最多的字符
- 计算出出现次数最多的字符出现的次数,记为 max_len,用total_len - max_len <=k 以判断其是否为合法字符串
# brute force
# - time: O(n^2)
# - space: O(n)
# sliding window - myself - 利用只会出现大写字符 O(26n) -> O(n)
# time: O(n) # length of the given string
# space: O(m) # the number of unique characters in the string
def characterReplacement(self, s, k):
"""
:type s: str
:type k: int
:rtype: int
"""
max_repeating_len = 0
l = 0
m = {} # space: o(n)
for r in range(len(s)): # time: O(n)
m[s[r]] = m.get(s[r], 0) + 1
while l < r: # scan the current window
total_len = 0
max_len = 0
for char, v in m.items(): # time: O(26)
total_len += v
if v > max_len:
max_len = v
if total_len - max_len <= k: # shrink-window condition
max_repeating_len = max(max_repeating_len, total_len)
break
else: # shrink the window
m[s[l]] = m[s[l]] - 1
l += 1
return max_repeating_len
# sliding window - neetcode - 利用只会出现大写字符 O(26n) -> O(n)
# time: O(n) # length of the given string -> O(26n)
# space: O(m) # the number of unique characters in the string
def characterReplacement(self, s, k):
"""
:type s: str
:type k: int
:rtype: int
"""
max_repeating_len = 0
l = 0
m = {} # space: o(n)
for r in range(len(s)): # time: O(n)
m[s[r]] = m.get(s[r], 0) + 1
while (r - l + 1) - max(m.values()) > k:
m[s[l]] -= 1
l += 1
max_repeating_len = max(max_repeating_len, r - l + 1)
return max_repeating_len
# ??
# sliding window - optinal solution
# length - maxf <= k
# - 我们需要执行 O(26), 来得到 length - maxf
# - 如果 maxf 变大,length - maxf 的值只会变小。反之, length - maxf 的值会变大。
# - 因而,只需要关心 length - maxf 的值只会变小的情况,因为我们希望找到更好的
def characterReplacement(self, s, k):
"""
:type s: str
:type k: int
:rtype: int
"""
max_repeating_len = 0
l = 0
m = {} # space: o(n)
max_f = 0
for r in range(len(s)): # time: O(n)
m[s[r]] = m.get(s[r], 0) + 1
max_f = max(max_f, m[s[r]])
while (r - l + 1) - max_f > k:
m[s[l]] -= 1
l += 1
max_repeating_len = max(max_repeating_len, r - l + 1)
return max_repeating_len
ref
todo - 1343. Number of Sub-arrays of Size K and Average Greater than or Equal to Threshold