Data Warehouse
In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is considered a core component of business intelligence. Data warehouses are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place that are used for creating analytical reports for workers throughout the enterprise. This is beneficial for companies as it enables them to interrogate and draw insights from their data and make decisions.
The data stored in the warehouse is uploaded from the operational systems (such as marketing or sales). The data may pass through an operational data store and may require data cleansing for additional operations to ensure data quality before it is used in the data warehouse for reporting.
Extract, transform, load (ETL) and extract, load, transform (ELT) are the two main approaches used to build a data warehouse system.
Related systems (data mart, OLAP, OLTP, predictive analytics)
A data mart is a simple form of a data warehouse that is focused on a single subject (or functional area), hence they draw data from a limited number of sources such as sales, finance or marketing. Data marts are often built and controlled by a single department within an organization. The sources could be internal operational systems, a central data warehouse, or external data. Denormalization is the norm for data modeling techniques in this system. Given that data marts generally cover only a subset of the data contained in a data warehouse, they are often easier and faster to implement.
Attribute | Data warehouse | Data mart |
---|---|---|
Scope of the data | enterprise-wide | department-wide |
Number of subject areas | multiple | single |
How difficult to build | difficult | easy |
How much time takes to build | more | less |
Amount of memory | larger | limited |