Overall
The select statement provides another way to handle multiple channels.
It’s like a switch, but each case is a communication:
- All channels are evaluated.
- Selection blocks until one communication can proceed, which then does.
- If multiple can proceed, select chooses pseudo-randomly.
- A default clause, if present, executes immediately if no channel is ready.
select {
case v1 := <-c1:
fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:
fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)
default:
fmt.Printf("no one was ready to communicate\n")
}
select
Go’s select lets you wait on multiple channel operations. Combining goroutines and channels with select is a powerful feature of Go.
A select
blocks until one of its cases can run, then it executes that case. It chooses one at random if multiple are ready.
Example 1
package main
import (
"fmt"
"time"
)
func main() {
// Each channel will receive a value after some amount of time, to simulate e.g. blocking RPC operations executing in concurrent goroutines.
c1 := make(chan string)
c2 := make(chan string)
go func() {
time.Sleep(1 * time.Second)
c1 <- "one"
}()
go func() {
time.Sleep(2 * time.Second)
c2 <- "two"
}()
for i := 0; i < 2; i++ {
// We’ll use select to await both of these values simultaneously, printing each one as it arrives.
select {
case msg1 := <-c1:
fmt.Println("received", msg1)
case msg2 := <-c2:
fmt.Println("received", msg2)
}
}
}
# Note that the total execution time is only ~2 seconds since both the 1 and 2 second Sleeps execute concurrently.
$ time go run select.go
received one
received two
real 0m2.245s
Example 2
select
语句选择一组可能的 send 操作和 receive 操作去处理。它类似 switch
, 但是只是用来处理通讯 (communication) 操作。
它的 case
可以是 send 语句,也可以是 receive 语句,亦或者 default
。
receive
语句可以将值赋值给一个或者两个变量。它必须是一个 receive 操作。
最多允许有一个 default case
, 它可以放在 case 列表的任何位置,尽管我们大部分会将它放在最后。
package main
import "fmt"
func fibonacci(c, quit chan int) {
x, y := 0, 1
for {
select {
case c <- x:
x, y = y, x+y
case <-quit:
fmt.Println("quit")
return
}
}
}
func main() {
c := make(chan int)
quit := make(chan int)
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
fibonacci(c, quit)
}
output:
0
1
1
2
3
5
8
13
21
34
quit
如果有同时多个 case 去处理,比如同时有多个 channel 可以接收数据,那么 Go 会伪随机的选择一个 case 处理 (pseudo-random)。如果没有 case 需要处理,则会选择 default
去处理,如果 default case
存在的情况下。如果没有 default case
,则 select
语句会阻塞,直到某个 case 需要处理。
需要注意的是,nil channel 上的操作会一直被阻塞,如果没有 default case, 只有 nil channel 的 select 会一直被阻塞。
select
语句和 switch
语句一样,它不是循环,它只会选择一个 case 来处理,如果想一直处理 channel,你可以在外面加一个无限的 for 循环:
for {
select {
case c <- x:
x, y = y, x+y
case <-quit:
fmt.Println("quit")
return
}
}
Example 3 - Deafault Selection
The default
case in a select
is run if no other case is ready.
Use a default
case to try a send or receive without blocking:
package main
import (
"fmt"
"time"
)
func main() {
tick := time.Tick(100 * time.Millisecond)
boom := time.After(500 * time.Millisecond)
fmt.Println("start: ", time.Now())
for {
select {
case <-tick:
fmt.Println("tick.")
case <-boom:
fmt.Println("BOOM!")
return
default:
fmt.Println(" .", time.Now())
time.Sleep(50 * time.Millisecond)
}
}
}
Ouput:
start: 2021-05-30 00:06:25.112943 +0800 +08 m=+0.000076131
. 2021-05-30 00:06:25.11308 +0800 +08 m=+0.000213931
. 2021-05-30 00:06:25.163775 +0800 +08 m=+0.050907950
tick.
. 2021-05-30 00:06:25.214493 +0800 +08 m=+0.101626169
. 2021-05-30 00:06:25.264906 +0800 +08 m=+0.152038849
tick.
. 2021-05-30 00:06:25.315246 +0800 +08 m=+0.202378358
. 2021-05-30 00:06:25.365353 +0800 +08 m=+0.252484648
tick.
. 2021-05-30 00:06:25.415521 +0800 +08 m=+0.302652447
. 2021-05-30 00:06:25.46862 +0800 +08 m=+0.355750735
tick.
. 2021-05-30 00:06:25.518711 +0800 +08 m=+0.405841375
. 2021-05-30 00:06:25.569271 +0800 +08 m=+0.456400844
tick.
BOOM!
Example 4 - Timeout
select
有很重要的一个应用就是超时处理。 因为上面我们提到,如果没有 case 需要处理,select 语句就会一直阻塞着。这时候我们可能就需要一个超时操作,用来处理超时的情况。
下面这个例子我们会在 2 秒后往 channel c1 中发送一个数据,但是 select
设置为 1 秒超时,因此我们会打印出 timeout 1
, 而不是 result 1
。
import "time"
import "fmt"
func main() {
c1 := make(chan string, 1)
go func() {
time.Sleep(time.Second * 2)
c1 <- "result 1"
}()
select {
case res := <-c1:
fmt.Println(res)
case <-time.After(time.Second * 1):
fmt.Println("timeout 1")
}
}
其实它利用的是 time.After
方法,它返回一个类型为 <-chan Time
的单向的 channel,在指定的时间发送一个当前时间给返回的 channel 中。
Example 5 - Timers
timer 是一个定时器,代表未来的一个单一事件,你可以告诉 timer 你要等待多长时间,它提供一个 Channel,在将来的那个时间那个 Channel 提供了一个时间值。下面的例子中第二行会阻塞 2 秒钟左右的时间,直到时间到了才会继续执行。
timer1 := time.NewTimer(time.Second * 2)
<-timer1.C
fmt.Println("Timer 1 expired")
当然如果你只是想单纯的等待的话,可以使用 time.Sleep
来实现。
你还可以使用 timer.Stop
来停止计时器。
package main
import (
"fmt"
"time"
)
func main() {
fmt.Printf("start, current time: %v\n", time.Now())
timer2 := time.NewTimer(1 * time.Second)
go func() {
<-timer2.C // after 1s, channel received here
fmt.Printf("Timer 2 expired, current time: %v\n", time.Now())
}()
time.Sleep(5 * time.Second)
fmt.Printf("check Timer 2 has stopped or not, current time: %v\n", time.Now())
notStop := timer2.Stop() // return false if the timer has already expired or been stopped.
if notStop {
fmt.Println("Timer 2 stopped")
}
}
如果注释掉 time.Sleep(5 * time.Second)
,output:
start, current time: 2021-05-25 23:28:06.155431 +0800 +08 m=+0.000060591
check Timer 2 has stopped or not, current time: 2021-05-25 23:28:06.155587 +0800 +08 m=+0.000216171
Timer 2 stopped
如果不注释掉 time.Sleep(5 * time.Second)
,output:
start, current time: 2021-05-25 23:31:36.563422 +0800 +08 m=+0.000061261
Timer 2 expired, current time: 2021-05-25 23:31:37.566743 +0800 +08 m=+1.003413541
check Timer 2 has stopped or not, current time: 2021-05-25 23:31:41.564029 +0800 +08 m=+5.000824104
Example 6 - Ticker
ticker
是一个定时触发的计时器,它会以一个间隔 (interval) 往 Channel 发送一个事件 (当前时间),而 Channel 的接收者可以以固定的时间间隔从 Channel 中读取事件。下面的例子中 ticker 每 500 毫秒触发一次,你可以观察输出的时间。
package main
import (
"fmt"
"time"
)
func main() {
ticker := time.NewTicker(time.Millisecond * 500)
go func() {
for t := range ticker.C {
fmt.Println("Tick at", t)
}
}()
time.Sleep(2 * time.Second)
}
类似 timer, ticker 也可以通过 Stop
方法来停止。一旦它停止,接收者不再会从 channel 中接收数据了。
Output:
Tick at 2021-05-25 23:32:53.587043 +0800 +08 m=+0.500905900
Tick at 2021-05-25 23:32:54.088342 +0800 +08 m=+1.002220770
Tick at 2021-05-25 23:32:54.589596 +0800 +08 m=+1.503489999