Clean and simple string building
For simple cases where performance is a non-issue, fmt.Sprintf
is your friend. It’s clean, simple and fairly efficient.
s := fmt.Sprintf("Size: %d MB.", 85) // s == "Size: 85 MB."
For simple cases where performance is a non-issue, fmt.Sprintf
is your friend. It’s clean, simple and fairly efficient.
s := fmt.Sprintf("Size: %d MB.", 85) // s == "Size: 85 MB."
A memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier.
Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behaviour in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture’s memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constraints.
There are three potential triggers for a context switch:
Most commonly, within some scheduling scheme, one process must be switched out of the CPU so another process can run. This context switch can be triggered by the process making itself unrunnable, such as by waiting for an I/O or synchronization operation to complete.
On a pre-emptive multitasking system, the scheduler may also switch out processes that are still runnable. To prevent other processes from being starved of CPU time, pre-emptive schedulers often configure a timer interrupt to fire when a process exceeds its time slice. This interrupt ensures that the scheduler will gain control to perform a context switch.
...