【Data Structure】跳跃表(Skiplist)

Posted by 西维蜀黍 on 2023-02-20, Last Modified on 2024-02-26

跳跃表(跳表,Skiplist)

引言

Redis因为其完全基于内存、性能出色,加上具备丰富的数据类型,在电商环境中深受后端开发的喜爱。其中有序集合zset就是基本数据类型之一,并且每个member都带有score(可用于排序),因此很适合在打赏日榜、近一周收益这类场景中运用。

跳表的定义

跳表(SkipList):增加了向前指针的链表叫做指针。跳表全称叫做跳跃表,简称跳表。跳表是一个随机化的数据结构,实质是一种可以进行二分查找的有序链表。跳表在原有的有序链表上增加了多级索引,通过索引来实现快速查询。跳表不仅能提高搜索性能,同时也可以提高插入和删除操作的性能。

跳表是一个随机化的数据结构,可以被看做二叉树的一个变种,它在性能上和红黑树、AVL树不相上下,但是跳表的原理非常简单,目前在Redis和LevelDB中都有用到。

跳表的详解

说明:本文中的图片均来自极客时间《数据结构与算法之美专栏》

对于一个单链表来说,即使链表中的数据是有序的,如果我们想要查找某个数据,也必须从头到尾的遍历链表,很显然这种查找效率是十分低效的,时间复杂度为O(n)。

那么我们如何提高查找效率呢?我们可以对链表建立一级“索引”,每两个结点提取一个结点到上一级,我们把抽取出来的那一级叫做索引或者索引层,如下图所示,down表示down指针。

假设我们现在要查找值为16的这个结点。我们可以先在索引层遍历,当遍历索引层中值为13的时候,通过值为13的结点的指针域发现下一个结点值为17,因为链表本身有序,所以值为16的结点肯定在13和17这两个结点之间。然后我们通过索引层结点的down指针,下降到原始链表这一层,继续往后遍历查找。这个时候我们只需要遍历2个结点(值为13和16的结点),就可以找到值等于16的这个结点了。如果使用原来的链表方式进行查找值为16的结点,则需要遍历10个结点才能找到,而现在只需要遍历7个结点即可,从而提高了查找效率。

那么我们可以由此得到启发,和上面建立第一级索引的方式相似,在第一级索引的基础上,每两个一级索引结点就抽到一个结点到第二级索引中。再来查找值为16的结点,只需要遍历6个结点即可,从而进一步提高了查找效率。

上面举得例子中的数据量不大,所以即便加了两级索引,查找的效率提升的也不是很明显,下面通过一个64结点的链表来更加直观的感受下索引提升查找效率,如图所示,建立了五级索引。

从图中我们可以看出来,原来没有索引的时候,查找62需要遍历62个结点,现在只需要遍历11个结点即可,速度提高了很多。那么,如果当链表的长度为10000、10000000时,通过构件索引之后,查找的效率就会提升的非常明显。

复杂度

跳表的时间复杂度

单链表的查找时间复杂度为:O(n),下面分析下跳表这种数据结构的查找时间复杂度:

我们首先考虑这样一个问题,如果链表里有n个结点,那么会有多少级索引呢?按照上面讲的,每两个结点都会抽出一个结点作为上一级索引的结点。那么第一级索引的个数大约就是n/2,第二级的索引大约就是n/4,第三级的索引就是n/8,依次类推,也就是说,第k级索引的结点个数是第k-1级索引的结点个数的1/2,那么第k级的索引结点个数为:

假设索引有h级,最高级的索引有2个结点,通过上面的公式,我们可以得到![n/(2^{h}) = 2](assets/(2^{h}) %3D 2.gif),从而可得:h =

。如果包含原始链表这一层,整个跳表的高度就是

。我们在跳表中查找某个数据的时候,如果每一层都要遍历m个结点,那么在跳表中查询一个数据的时间复杂度就为:O(m*logn)。

其实根据前面的分析,我们不难得出m=3,即每一级索引都最多只需要遍历3个结点,分析如下:

如上图所示,假如我们要查找的数据是x,在第k级索引中,我们遍历到y结点之后,发现x大于y,小于y后面的结点z。所以我们通过y的down指针,从第k级索引下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个结点(包含y和z)。所以,我们在k-1级索引中最多需要遍历3个结点,以此类推,每一级索引都最多只需要遍历3个结点。

因此,m=3,所以跳表查找任意数据的时间复杂度为O(logn),这个查找的时间复杂度和二分查找是一样的,但是我们却是基于单链表这种数据结构实现的。不过,天下没有免费的午餐,这种查找效率的提升是建立在很多级索引之上的,即空间换时间的思想。其具体空间复杂度见下文详解。【面试题:如何让链表的元素查询接近线性时间】

跳表的空间复杂度

比起单纯的单链表,跳表就需要额外的存储空间去存储多级索引。假设原始链表的大小为n,那么第一级索引大约有n/2个结点,第二级索引大约有4/n个结点,依次类推,每上升一级索引结点的个数就减少一半,直到剩下最后2个结点,如下图所示,其实就是一个等比数列。

这几级索引结点总和为:n/2 + n/4 + n/8 + … + 8 + 4 + 2 = n - 2。所以跳表的空间复杂度为O(n)。也就是说如果将包含n个结点的单链表构造成跳表,我们需要额外再用接近n个结点的存储空间。

其实从上面的分析,我们利用空间换时间的思想,已经把时间压缩到了极致,因为每一级每两个索引结点就有一个会被抽到上一级的索引结点中,所以此时跳表所需要的额外内存空间最多,即空间复杂度最高。其实我们可以通过改变抽取结点的间距来降低跳表的空间复杂度,在其时间复杂度和空间复杂度方面取一个综合性能,当然也要看具体情况,如果内存空间足够,那就可以选择最小的结点间距,即每两个索引结点抽取一个结点到上一级索引中。如果想降低跳表的空间复杂度,则可以选择每三个或者每五个结点,抽取一个结点到上级索引中。

如上图所示,每三个结点抽取一个结点到上一级索引中,则第一级需要大约n/3个结点,第二级索引大约需要n/9个结点。每往上一级,索引的结点个数就除以3,为了方便计算,我们假设最高一级的索引结点个数为1,则可以得到一个等比数列,去下图所示:

通过等比数列的求和公式,总的索引结点大约是:n/3 + n /9 + n/27 + … + 9 + 3 + 1 = n/2。尽管空间复杂度还是O(n),但是比之前的每两个结点抽一个结点的索引构建方法,可以减少了一半的索引结点存储空间。

实际上,在软件开发中,我们不必太在意索引占用的额外空间。在讲数据结构的时候,我们习惯性地把要处理的数据看成整数,但是在实际的软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值和几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。

跳表的插入

跳表插入的时间复杂度为:O(logn),支持高效的动态插入。

在单链表中,一旦定位好要插入的位置,插入结点的时间复杂度是很低的,就是O(1)。但是为了保证原始链表中数据的有序性,我们需要先找到要插入的位置,这个查找的操作就会比较耗时。

对于纯粹的单链表,需要遍历每个结点,来找到插入的位置。但是对于跳表来说,查找的时间复杂度为O(logn),所以这里查找某个数据应该插入的位置的时间复杂度也是O(logn),如下图所示:

跳表的删除

跳表的删除操作时间复杂度为:O(logn),支持动态的删除。

在跳表中删除某个结点时,如果这个结点在索引中也出现了,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到删除结点的前驱结点,然后再通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点(双向链表除外)。因此跳表的删除操作时间复杂度即为O(logn)。

跳表索引动态更新

当我们不断地往跳表中插入数据时,我们如果不更新索引,就有可能出现某2个索引节点之间的数据非常多的情况,在极端情况下,跳表还会退化成单链表,如下图所示:

作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中的结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入和删除操作性能的下降。

如果你了解红黑树、AVL树这样的平衡二叉树,你就会知道它们是通过左右旋的方式保持左右子树的大小平衡,而跳表是通过随机函数来维护“平衡性”。

当我们往跳表中插入数据的时候,我们可以通过一个随机函数,来决定这个结点插入到哪几级索引层中,比如随机函数生成了值K,那我们就将这个结点添加到第一级到第K级这个K级索引中。如下图中要插入数据为6,K=2的例子:

随机函数的选择是非常有讲究的,从概率上讲,能够保证跳表的索引大小和数据大小平衡性,不至于性能的过度退化。至于随机函数的选择,见下面的代码实现过程,而且实现过程并不是重点,掌握思想即可。

跳表的性质

  1. 由很多层结构组成,level是通过一定的概率随机产生的;
  2. 每一层都是一个有序的链表,默认是升序 ;
  3. 最底层(Level 1)的链表包含所有元素;
  4. 如果一个元素出现在Level i 的链表中,则它在Level i 之下的链表也都会出现;
  5. 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。

zset底层存储结构

 zset底层的存储结构包括ziplist或skiplist,在同时满足以下两个条件的时候使用ziplist,其他时候使用skiplist,两个条件如下:

  • 有序集合保存的元素数量小于128个
  • 有序集合保存的所有元素的长度小于64字节

 当ziplist作为zset的底层存储结构时候,每个集合元素使用两个紧挨在一起的压缩列表节点来保存,第一个节点保存元素的成员,第二个元素保存元素的分值。

 当skiplist作为zset的底层存储结构的时候,使用skiplist按序保存元素及分值,使用dict来保存元素和分值的映射关系。

ziplist数据结构

 ziplist作为zset的存储结构时,格式如下图,细节就不多说了,我估计大家都看得懂,紧挨着的是元素memeber和分值socore,整体数据是有序格式。

skiplist数据结构

 skiplist作为zset的存储结构,整体存储结构如下图,核心点主要是包括一个dict对象和一个skiplist对象。dict保存key/value,key为元素,value为分值;skiplist保存的有序的元素列表,每个元素包括元素和分值。两种数据结构下的元素指向相同的位置。

Zset应用场景

Redis 的 Zset(有序集合)类型在许多场景中都非常有用,以下是一些常见的应用场景:

  1. 排行榜:Zset 非常适合用于实现各种排行榜。例如,你可以将用户的 ID 作为元素,用户的分数作为分数,然后使用 Zset 来存储和排序所有用户的分数。你可以很容易地获取到分数最高的用户,或者获取到任何用户的排名。
  2. 时间线:你可以使用 Zset 来实现时间线功能。例如,你可以将发布的消息作为元素,消息的发布时间作为分数,然后使用 Zset 来存储和排序所有的消息。你可以很容易地获取到最新的消息,或者获取到任何时间段内的消息。
  3. 带权重的队列:Zset 可以用于实现带权重的队列。例如,你可以将任务作为元素,任务的优先级作为分数,然后使用 Zset 来存储和排序所有的任务。你可以很容易地获取到优先级最高的任务,或者按优先级顺序执行任务。
  4. 延时队列:你可以将需要延时处理的任务作为元素,任务的执行时间作为分数,然后使用 Zset 来存储和排序所有的任务。你可以定期扫描 Zset,处理已经到达执行时间的任务。

Reference